Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Preserving C2 Interpolatory Subdivision Schemes

Stationary interpolatory subdivision schemes which preserve shape properties such as convexity or monotonicity are constructed. The schemes are rational in the data and generate limit functions that are at least C 2. The emphasis is on a class of six-point convexity preserving subdivision schemes that generate C 2 limit functions. In addition, a class of six-point monotonicity preserving scheme...

متن کامل

Monotonicity preserving interpolatory subdivision schemes

A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit functions that are continu...

متن کامل

Subdivision schemes for shape preserving approximations

We use subdivision schemes with general dilation to efficiently evaluate shape preserving approximations. To fulfill our goal the refinement rules of the schemes are obtained by the refinement masks associated to refinable ripplets, i.e. refinable functions whose integer translates form a variation diminishing basis.

متن کامل

Hermite-interpolatory subdivision schemes

Stationary interpolatory subdivision schemes for Hermite data that consist of function values and first derivatives are examined. A general class of Hermite-interpolatory subdivision schemes is proposed, and some of its basic properties are stated. The goal is to characterise and construct certain classes of nonlinear (and linear) Hermite schemes. For linear Hermite subdivision, smoothness cond...

متن کامل

Shape controlled interpolatory ternary subdivision

Ternary subdivision schemes compare favorably with their binary analogues because they are able to generate limit functions with the same (or higher) smoothness but smaller support. In this work we consider the two issues of local tension control and conics reproduction in univariate interpolating ternary refinements. We show that both these features can be included in a unique interpolating 4-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2002

ISSN: 0021-9045

DOI: 10.1006/jath.2001.3628